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25.2. Finite horizon

1. The arbitrage-free price of the American put option with finite horizon (cf.
(25.1.1) above) is given by

V (t, x) = sup
0≤τ≤T−t

Et,x

(
e−rτ(K −Xt+τ )+

)
(25.2.1)

where τ is a stopping time of the geometric Brownian motion X = (Xt+s)s≥0

solving
dXt+s = rXt+s ds + σXt+s dBs (25.2.2)

with Xt = x > 0 under Pt,x . We recall that B = (Bs)s≥0 denotes a standard
Brownian motion process started at zero, T > 0 is the expiration date (maturity),
r > 0 is the interest rate, K > 0 is the strike (exercise) price, and σ > 0 is the
volatility coefficient. Similarly to (25.1.2) the strong solution of (25.2.2) under Pt,x

is given by
Xt+s = x exp

(
σBs + (r−σ2/2)s

)
(25.2.3)

whenever t ≥ 0 and x > 0 are given and fixed. The process X is strong Markov
(diffusion) with the infinitesimal generator given by

LX = rx
∂

∂x
+

σ2

2
x2 ∂2

∂x2
. (25.2.4)

We refer to [197] for more information on the derivation and economic meaning
of (25.2.1).

2. Let us determine the structure of the optimal stopping time in the prob-
lem (25.2.1).

(i) First note that since the gain function G(x) = (K−x)+ is continuous, it
is possible to apply Corollary 2.9 (Finite horizon) with Remark 2.10 and conclude
that there exists an optimal stopping time in the problem (25.2.1). From our earlier
considerations we may therefore conclude that the continuation set equals

C = { (t, x) ∈ [0, T )× (0,∞) : V (t, x) > G(x) } (25.2.5)

and the stopping set equals

D̄ = { (t, x) ∈ [0, T ]× (0,∞) : V (t, x) = G(x) }. (25.2.6)

It means that the stopping time τD̄ defined by

τD̄ = inf { 0 ≤ s ≤ T − t : Xt+s ∈ D̄ } (25.2.7)

is optimal in (25.2.1).
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(ii) We claim that all points (t, x) with x ≥ K for 0 ≤ t < T belong
to the continuation set C . Indeed, this is easily verified by considering τε =
inf { 0 ≤ s ≤ T − t : Xt+s ≤ K − ε } for 0 < ε < K and noting that Pt,x(0 <
τε < T − t) > 0 if x ≥ K with 0 ≤ t < T . The strict inequality implies that
Et,x(e−rτε(K − Xt+τε)+) > 0 so that (t, x) with x ≥ K for 0 ≤ t < T cannot
belong to the stopping set D̄ as claimed.

(iii) Recalling the solution to the problem (25.2.1) in the case of infinite
horizon, where the stopping time τ∗ = inf { s > 0 : Xs ≤ A∗ } is optimal and
0 < A∗ < K is explicitly given by Theorem 25.1 above, we see that all points
(t, x) with 0 < x ≤ A∗ for 0 ≤ t ≤ T belong to the stopping set D̄ . Moreover,
since x �→ V (t, x) is convex on (0,∞) for each 0 ≤ t ≤ T given and fixed
(the latter is easily verified using (25.2.1) and (25.2.3) above), it follows directly
from the previous two conclusions about C and D̄ that there exists a function
b : [0, T ] → R satisfying 0 < A∗ ≤ b(t) < K for all 0 ≤ t < T (later we will see
that b(T ) = K as well) such that the continuation set C equals

C = {(t, x) ∈ [0, T )× (0,∞) : x > b(t)} (25.2.8)

and the stopping set D̄ is the closure of the set

D = {(t, x) ∈ [0, T ]× (0,∞) : x < b(t)} (25.2.9)

joined with remaining points (T, x) for x ≥ b(T ) . (Below we will show that V
is continuous so that C is open.)

(iv) Since the problem (25.2.1) is time-homogeneous, in the sense that the
gain function G(x) = (K−x)+ is a function of space only (i.e. does not depend
on time), it follows that the map t �→ V (t, x) is decreasing on [0, T ] for each
x ∈ (0,∞) . Hence if (t, x) belongs to C for some x ∈ (0,∞) and we take any
other 0 ≤ t′ < t ≤ T , then V (t′, x) − G(x) ≥ V (t, x) − G(x) > 0 , showing
that (t′, x) belongs to C as well. From this we may conclude that the boundary
t �→ b(t) in (25.2.8) and (25.2.9) is increasing on [0, T ] .

3. Let us show that the value function (t, x) �→ V (t, x) is continuous on
[0, T ]× (0,∞) .

For this, it is enough to prove that

x �→ V (t, x) is continuous at x0, (25.2.10)
t �→ V (t, x) is continuous at t0 uniformly over x ∈ [x0 − δ, x0 + δ] (25.2.11)

for each (t0, x0) ∈ [0, T ]× (0,∞) with some δ > 0 small enough (it may depend
on x0 ).

Since (25.2.10) follows from the fact that x �→ V (t, x) is convex on (0,∞) ,
it remains to establish (25.2.11).
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For this, let us fix arbitrary 0 ≤ t1 < t2 ≤ T and x ∈ (0,∞) , and let
τ1 = τ∗(t1, x) denote the optimal stopping time for V (t1, x) . Set τ2 = τ1∧(T−t2)
and note, since t �→ V (t, x) is decreasing on [0, T ] , that upon denoting St =
exp(σBt + γt) with γ = r − σ2/2 we have

0 ≤ V (t1, x) − V (t2, x) (25.2.12)

≤ E
(
e−rτ1(K − xSτ1)

+
)− E

(
e−rτ2(K − xSτ2)

+
)

≤ E
(
e−rτ2

[
(K − xSτ1)

+ − (K − xSτ2)
+
])

≤ xE (Sτ2 − Sτ1)
+

where we use that τ2 ≤ τ1 and that (K − y)+−(K − z)+ ≤ (z−y)+ for y, z ∈ R .

Set Zt = σBt + γt and recall that stationary independent increments of
Z = (Zt)t≥0 imply that (Zτ2+t −Zτ2)t≥0 is a version of Z , i.e. the two processes
have the same law. Using that τ1 − τ2 ≤ t2 − t1 hence we get

E (Sτ2 − Sτ1)
+ = E

(
E
(
(Sτ2 − Sτ1)

+ | Fτ2

))
(25.2.13)

= E
(
Sτ2 E

(
(1 − Sτ1/Sτ2)

+ | Fτ2

))
= E

(
Sτ2 E

(
(1 − eZτ1−Zτ2 )+ | Fτ2

))
= E (Sτ2)E

(
1 − eZτ1−Zτ2

)+
= E (Sτ2)E

(
1 − inf

0≤t≤t2−t1
eZτ2+t−Zτ2

)
= E (Sτ2)E

(
1 − inf

0≤t≤t2−t1
eZt

)
=: E (Sτ2)L(t2 − t1)

where we also used that Zτ1 −Zτ2 is independent from Fτ2 . By basic properties
of Brownian motion it is easily seen that L(t2 − t1) → 0 as t2 − t1 → 0 .

Combining (25.2.12) and (25.2.13) we find by the martingale property of(
exp(σBt − (σ2/2)t)

)
t≥0

that

0 ≤ V (t1, x) − V (t2, x) ≤ xE (Sτ2)L(t2 − t1) ≤ x erT L(t2 − t1) (25.2.14)

from where (25.2.11) becomes evident. This completes the proof.

4. In order to prove that the smooth-fit condition (25.2.28) holds, i.e. that
x �→ V (t, x) is C1 at b(t) , let us fix a point (t, x) ∈ (0, T ) × (0,∞) lying on
the boundary b so that x = b(t) . Then x < K and for all ε > 0 such that
x + ε < K we have

V (t, x + ε) − V (t, x)
ε

≥ G(x + ε) − G(x)
ε

= −1 (25.2.15)

and hence, taking the limit in (25.2.15) as ε ↓ 0 , we get

∂+V

∂x
(t, x) ≥ G′(x) = −1 (25.2.16)
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where the right-hand derivative exists (and is finite) by virtue of the convexity of
the mapping x �→ V (t, x) on (0,∞) . (Note that the latter will also be proved
independently below.)

To prove the converse inequality, let us fix ε > 0 such that x + ε < K , and
consider the stopping time τε = τ∗(t, x + ε) being optimal for V (t, x + ε) . Then
we have

V (t, x + ε) − V (t, x) (25.2.17)

≤ E
(
e−rτε(K − (x + ε)Sτε)

+
)− E

(
e−rτε(K − xSτε)

+
)

≤ E
(
e−rτε

[
(K − (x + ε)Sτε)

+ − (K − xSτε)
+
]
I
(
(x + ε)Sτε < K

))
= −ε E

(
e−rτεSτεI

(
(x + ε)Sτε < K

))
.

Using that s �→ − γ
σ s is a lower function of B at zero and the fact that the

optimal boundary s �→ b(s) is increasing on [t, T ] , it is not difficult to verify that
τε → 0 P-a.s. as ε ↓ 0 . In particular, this implies that

E
(
e−rτεSτε I((x+ε)Sτε < K)

)→ 1 (25.2.18)

as ε ↓ 0 by the dominated convergence theorem.

Combining (25.2.17) and (25.2.18) we see that

∂+V

∂x
(t, x) ≤ G′(x) = −1 (25.2.19)

which together with (25.2.16) completes the proof.

5. We proceed to prove that the boundary b is continuous on [0, T ] and
that b(T ) = K .

(i) Let us first show that the boundary b is right-continuous on [0, T ] .
For this, fix t ∈ (0, T ] and consider a sequence tn ↓ t as n → ∞ . Since b
is increasing, the right-hand limit b(t+) exists. Because (tn, b(tn)) ∈ D̄ for all
n ≥ 1 , and D̄ is closed, we get that (t, b(t+)) ∈ D̄ . Hence by (25.2.9) we see
that b(t+) ≤ b(t) . The reverse inequality follows obviously from the fact that b
is increasing on [0, T ] , thus proving the claim.

(ii) Suppose that at some point t∗ ∈ (0, T ) the function b makes a jump,
i.e. let b(t∗) > b(t∗−) . Let us fix a point t′ < t∗ close to t∗ and consider the
half-open set R ⊆ C being a curved trapezoid formed by the vertices (t′, b(t′)) ,
(t∗, b(t∗−)) , (t∗, x′) and (t′, x′) with any x′ fixed arbitrarily in the interval
(b(t∗−), b(t∗)) .

Recall that the strong Markov property (cf. Chapter III) implies that the
value function V is C1,2 in C . Note also that the gain function G is C2 in
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R so that by the Newton–Leibniz formula using (25.2.27) and (25.2.28) it follows
that

V (t, x) − G(x) =
∫ x

b(t)

∫ u

b(t)

(Vxx(t, v) − Gxx(v)) dv du (25.2.20)

for all (t, x) ∈ R . Moreover, the strong Markov property (cf. Chapter III) implies
that the value function V solves the equation (25.2.26) from where using that
t �→ V (t, x) and x �→ V (t, x) are decreasing so that Vt ≤ 0 and Vx ≤ 0 in C ,
we obtain

Vxx(t, x) =
2

σ2x2

(
rV (t, x) − Vt(t, x) − rxVx(t, x)

)
(25.2.21)

=
2

σ2x2
r(K − x)+ ≥ c > 0

for each (t, x) ∈ R where c > 0 is small enough.

Hence by (25.2.20) using that Gxx = 0 in R we get

V (t′, x′) − G(x′) ≥ c
(x′ − b(t′))2

2
−→ c

(x′ − b(t∗))2

2
> 0 (25.2.22)

as t′ ↑ t∗ . This implies that V (t∗, x′) > G(x′) which contradicts the fact that
(t∗, x′) belong to the stopping set D̄ . Thus b(t∗+) = b(t∗) showing that b is
continuous at t∗ and thus on [0, T ] as well.

(iii) We finally note that the method of proof from the previous part (ii) also
implies that b(T ) = K . To see this, we may let t∗ = T and likewise suppose
that b(T ) < K . Then repeating the arguments presented above word by word we
arrive at a contradiction with the fact that V (t, x) = G(x) for all x ∈ [b(T ), K] .

6. Summarizing the facts proved in paragraphs 1–5 above we may conclude
that the following hitting time is optimal in the problem (25.2.1):

τb = inf { 0 ≤ s ≤ T − t : Xt+s ≤ b(t+s) } (25.2.23)

(the infimum of an empty set being equal to T −t ) where the boundary b satisfies
the properties

b : [0, T ] → (0, K] is continuous and increasing, (25.2.24)
b(T ) = K. (25.2.25)

(see Figure VII.1).

Standard arguments based on the strong Markov property (cf. Chapter III)
lead to the following free-boundary problem for the unknown value function V
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β

Κ

x

Tτb

t Xt→ t b(t)→

Figure VII.1: A computer drawing of the optimal stopping boundary b
from Theorem 25.3. The number β is the optimal stopping point in the
case of infinite horizon (Theorem 25.1).

and the unknown boundary b :

Vt + LXV = rV in C, (25.2.26)

V (t, x) = (K − x)+ for x = b(t), (25.2.27)
Vx(t, x) = −1 for x = b(t) (smooth fit), (25.2.28)

V (t, x) > (K − x)+ in C, (25.2.29)

V (t, x) = (K − x)+ in D (25.2.30)

where the continuation set C is defined in (25.2.8) above and the stopping set D̄
is the closure of the set D in (25.2.9) above.

7. The following properties of V and b were verified above:

V is continuous on [0, T ]×R+, (25.2.31)

V is C1,2 on C (and C1,2 on D̄), (25.2.32)
x �→ V (t, x) is decreasing and convex with Vx(t, x) ∈ [−1, 0], (25.2.33)

t �→ V (t, x) is decreasing with V (T, x) = (K −x)+, (25.2.34)
t �→ b(t) is increasing and continuous with 0 < b(0+) < K (25.2.35)
and b(T−) = K.
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Note also that (25.2.28) means that x �→ V (t, x) is C1 at b(t) .

Once we know that V satisfying (25.2.28) is “sufficiently regular” (cf. foot-
note 14 in [27] when t �→ V (t, x) is known to be C1 for all x ), we can apply Itô’s
formula (page 67) to e−rsV (t+s, Xt+s) in its standard form and take the Pt,x -
expectation on both sides in the resulting identity. The martingale term then van-
ishes by the optional sampling theorem (page 60) using the final part of (25.2.33)
above, so that by (25.2.26) and (25.2.27)+(25.2.30) upon setting s = T − t (being
the key advantage of the finite horizon) one obtains the early exercise premium
representation of the value function

V (t, x) = e−r(T−t)Et,xG(XT ) (25.2.36)

−
∫ T−t

0

e−ruEt,x

(
H(t−u, Xt+u) I

(
Xt+u ≤ b(t+u)

))
du

= e−r(T−t)Et,xG(XT ) + rK

∫ T−t

0

e−ruPt,x

(
Xt+u ≤ b(t+u)

)
du

for all (t, x) ∈ [0, T ]×R+ where we set G(x) = (K −x)+ and H = Gt+LXG−rG
so that H = −rK for x < b(t) .

A detail worth mentioning in this derivation (see (25.2.47) below) is that
(25.2.36) follows from (3.5.9) with F (t+s, Xt+s) = e−rsV (t+s, Xt+s) without
knowing a priori that t �→ V (t, x) is C1 at b(t) as required under the condition of
“sufficiently regular” recalled prior to (25.2.36) above. This approach is more direct
since the sufficient conditions (3.5.10)–(3.5.13) for (3.5.9) are easier verified than
sufficient conditions [such as b is C1 or (locally) Lipschitz] for t �→ V (t, x) to be
C1 at b(t) . This is also more in the spirit of the free-boundary equation (25.2.39)
to be derived below where neither differentiability nor a Lipschitz property of b
plays a role in the formulation.

Since V (t, x) = G(x) = (K −x)+ in D̄ by (25.2.27)+(25.2.30), we see that
(25.2.36) reads

K − x = e−r(T−t) Et,x(K −XT )+ (25.2.37)

+ rK

∫ T−t

0

e−ruPt,x

(
Xt+u ≤ b(t+u)

)
du

for all x ∈ (0, b(t)] and all t ∈ [0, T ] .

8. A natural candidate equation is obtained by inserting x = b(t) in (25.2.37).
This leads to the free-boundary equation (cf. Subsection 14.1)

K − b(t) = e−r(T−t) Et,b(t)(K −XT )+ (25.2.38)

+ rK

∫ T−t

0

e−ru Pt,b(t)

(
Xt+u ≤ b(t+u)

)
du
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which upon using (25.2.3) more explicitly reads as follows:

K − b(t) (25.2.39)

= e−r(T−t)

∫ K

0

Φ
(

1
σ
√

T − t

(
log

K − z

b(t)
−
(
r− σ2

2

)
(T − t)

))
dz

+ rK

∫ T−t

0

e−ru Φ
(

1
σ
√

u

(
log

b(t+u)
b(t)

−
(
r− σ2

2

)
u

))
du

for all t ∈ [0, T ] where Φ(x) = (1/
√

2π)
∫ x

−∞ e−z2/2dz for x ∈ R . It is a nonlinear
Volterra integral equation of the second kind (see [212]).

9. The main result of the present subsection may now be stated as follows
(see also Remark 25.5 below).

Theorem 25.3. The optimal stopping boundary in the American put problem
(25.2.1) can be characterized as the unique solution of the free-boundary equa-
tion (25.2.39) in the class of continuous increasing functions c : [0, T ] → R satis-
fying 0 < c(t) < K for all 0 < t < T .

Proof. The fact that the optimal stopping boundary b solves (25.2.38) i.e. (25.2.39)
was derived above. The main emphasis of the theorem is thus on the claim of
uniqueness. Let us therefore assume that a continuous increasing c : [0, T ] → R

solving (25.2.39) is given such that 0 < c(t) < K for all 0 < t < T , and let us
show that this c must then coincide with the optimal stopping boundary b . The
proof of this implication will be presented in the nine steps as follows.

1◦. In view of (25.2.36) and with the aid of calculations similar to those
leading from (25.2.38) to (25.2.39), let us introduce the function

U c(t, x) (25.2.40)

= e−r(T−t) Et,xG(XT ) + rK

∫ T−t

0

e−ru Pt,x

(
Xt+u ≤ c(t+u)

)
du

= e−r(T−t) U c
1(t, x) + rK U c

2(t, x)

where U c
1 and U c

2 are defined as follows:

U c
1(t, x) =

∫ K

0

Φ
(

1
σ
√

T − t

(
log

K − z

x
−γ (T − t)

))
dz, (25.2.41)

U c
2(t, x) =

∫ T

t

e−r(v−t) Φ
(

1
σ
√

v− t

(
log

c(v)
x

−γ (v− t)
))

dv (25.2.42)

for all (t, x) ∈ [0, T )×(0,∞) upon setting γ = r−σ2/2 and substituting v = t+u .
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Denoting ϕ = Φ′ we then have

∂U c
1

∂x
(t, x) = − 1

σx
√

T − t

∫ K

0

ϕ

(
1

σ
√

T − t

(
log

K − z

x
−γ (T − t)

))
dz, (25.2.43)

∂U c
2

∂x
(t, x) = − 1

σx

∫ T

t

e−r(v−t)

√
v− t

ϕ

(
1

σ
√

v− t

(
log

c(v)
x

−γ (v− t)
))

dv (25.2.44)

for all (t, x) ∈ [0, T ) × (0,∞) where the interchange of differentiation and inte-
gration is justified by standard means. From (25.2.43) and (25.2.44) we see that
∂U c

1/∂x and ∂U c
2/∂x are continuous on [0, T )×(0,∞) , which in view of (25.2.40)

implies that U c
x is continuous on [0, T )× (0,∞) .

2◦. In accordance with (25.2.36) define a function V c : [0, T ) × (0,∞) → R

by setting V c(t, x) = U c(t, x) for x > c(t) and V c(t, x) = G(x) for x ≤ c(t)
when 0 ≤ t < T . Note that since c solves (25.2.39) we have that V c is continuous
on [0, T )× (0,∞) , i.e. V c(t, x) = U c(t, x) = G(x) for x = c(t) when 0 ≤ t < T .
Let C1 and C2 be defined by means of c as in (3.5.3) and (3.5.4) with [0, T )
instead of R+ , respectively.

Standard arguments based on the Markov property (or a direct verification)
show that V c i.e. U c is C1,2 on C1 and that

V c
t + LXV c = rV c in C1. (25.2.45)

Moreover, since U c
x is continuous on [0, T )× (0,∞) we see that V c

x is continuous
on C̄1 . Finally, since 0 < c(t) < K for 0 < t < T we see that V c i.e. G is C1,2

on C̄2 .

3◦. Summarizing the preceding conclusions one can easily verify that with
(t, x) ∈ [0, T ) × (0,∞) given and fixed, the function F : [0, T − t) × (0,∞) → R

defined by
F (s, y) = e−rsV c(t+s, xy) (25.2.46)

satisfies (3.5.10)–(3.5.13) (in the relaxed form) so that (3.5.9) can be applied. In
this way we get

e−rsV c(t+s, Xt+s) = V c(t, x) (25.2.47)

+
∫ s

0

e−ru
(
V c

t +LXV c − rV c
)
(t+u, Xt+u) I(Xt+u �= c(t+u)) du

+ M c
s +

1
2

∫ s

0

e−ru∆xV c
x (t+u, c(t+u)) d�c

u(X)

where M c
s =

∫ s

0 e−ruV c
x (t+u, Xt+u)σXt+u I(Xt+u �= c(t+u)) dBu and we set

∆xV c
x (v, c(v)) = V c

x (v, c(v)+)−V c
x (v, c(v)−) for t ≤ v ≤ T . Moreover, it is easily

seen from (25.2.43) and (25.2.44) that (M c
s )0≤s≤T−t is a martingale under Pt,x

so that Et,xM c
s = 0 for each 0 ≤ s ≤ T − t .
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4◦. Setting s = T − t in (25.2.47) and then taking the Pt,x -expectation,
using that V c(T, x) = G(x) for all x > 0 and that V c satisfies (25.2.45) in C1 ,
we get

e−r(T−t)Et,xG(XT ) = V c(t, x) (25.2.48)

+
∫ T−t

0

e−ruEt,x

(
H(t+u, Xt+u) I(Xt+u ≤ c(t+u))

)
du

+
1
2

∫ T−t

0

e−ru∆xV c
x (t+u, c(t+u)) duEt,x(�c

u(X))

for all (t, x) ∈ [0, T )× (0,∞) where H = Gt + LXG − rG = −rK for x ≤ c(t) .
From (25.2.48) we thus see that

V c(t, x) = e−r(T−t)Et,xG(XT ) (25.2.49)

+ rK

∫ T−t

0

e−ruPt,x(Xt+u ≤ c(t+u)) du

− 1
2

∫ T−t

0

e−ru∆xV c
x (t+u, c(t+u)) duEt,x(�c

u(X))

for all (t, x) ∈ [0, T ) × (0,∞) . Comparing (25.2.49) with (25.2.40), and recalling
the definition of V c in terms of U c and G , we get∫ T−t

0

e−ru∆xV c
x (t+u, c(t+u))duEt,x(�c

u(X)) (25.2.50)

= 2
(
U c(t, x)−G(x)

)
I(x ≤ c(t))

for all 0 ≤ t < T and x > 0 , where I(x ≤ c(t)) equals 1 if x ≤ c(t) and 0 if
x > c(t) .

5◦. From (25.2.50) we see that if we are to prove that

x �→ V c(t, x) is C1 at c(t) (25.2.51)

for each 0 ≤ t < T given and fixed, then it will follow that

U c(t, x) = G(x) for all 0 < x ≤ c(t). (25.2.52)

On the other hand, if we know that (25.2.52) holds, then using the general fact

∂

∂x

(
U c(t, x) − G(x)

)∣∣∣
x=c(t)

= V c
x (t, c(t)+) − V c

x (t, c(t)−) (25.2.53)

= ∆xV c
x (t, c(t))

for all 0 ≤ t < T , we see that (25.2.51) holds too (since U c
x is continuous). The

equivalence of (25.2.51) and (25.2.52) just explained then suggests that instead of
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dealing with the equation (25.2.50) in order to derive (25.2.51) above (which was
the content of an earlier proof) we may rather concentrate on establishing (25.2.52)
directly. [To appreciate the simplicity and power of the probabilistic argument to
be given shortly below one may differentiate (25.2.50) with respect to x , compute
the left-hand side explicitly (taking care of a jump relation), and then try to prove
the uniqueness of the zero solution to the resulting (weakly singular) Volterra
integral equation using any of the known analytic methods (see e.g. [212]).]

6◦. To derive (25.2.52) first note that standard arguments based on the
Markov property (or a direct verification) show that U c is C1,2 on C2 and that

U c
t + LXU c − rU c = −rK in C2 . (25.2.54)

Since F in (25.2.46) with U c instead of V c is continuous and satisfies (3.5.10)–
(3.5.13) (in the relaxed form), we see that (3.5.9) can be applied just as in (25.2.47),
and this yields

e−rsU c(t+s, Xt+s) (25.2.55)

= U c(t, x) − rK

∫ s

0

e−ruI(Xt+u ≤ c(t+u)) du + M̃ c
s

upon using (25.2.45) and (25.2.54) as well as that ∆xU c
x(t+u, c(t+u)) = 0 for all

0 ≤ u ≤ s since U c
x is continuous. In (25.2.55) we have M̃ c

s =
∫ s

0 e−ruU c
x(t+u,

Xt+u)σXt+u I(Xt+u �= c(t+u)) dBu and (M̃ c
s )0≤s≤T−t is a martingale under

Pt,x .

Next note that (3.5.9) applied to F in (25.2.46) with G instead of V c yields

e−rsG(Xt+s) = G(x) − rK

∫ s

0

e−ruI(Xt+u < K) du (25.2.56)

+ MK
s +

1
2

∫ s

0

e−ru d�K
u (X)

upon using that Gt + LXG − rG equals −rK on (0, K) and 0 on (K,∞) as
well as that ∆xGx(t+u, K) = 1 for 0 ≤ u ≤ s . In (25.2.56) we have MK

s =∫ s

0 e−ru G′(Xt+u)σXt+u I(Xt+u �= K) dBu = − ∫ s

0 e−ru σXt+u I(Xt+u < K) dBu

and (MK
s )0≤s≤T−t is a martingale under Pt,x .

For 0 < x ≤ c(t) consider the stopping time

σc = inf { 0 ≤ s ≤ T − t : Xt+s ≥ c(t+s) }. (25.2.57)

Then using that U c(t, c(t)) = G(c(t)) for all 0 ≤ t < T since c solves (25.2.9),
and that U c(T, x) = G(x) for all x > 0 by (25.2.40), we see that U c(t +
σc, Xt+σc) = G(Xt+σc) . Hence from (25.2.55) and (25.2.56) using the optional
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sampling theorem (page 60) we find

U c(t, x) = Et,x

(
e−rσcU c(t+σc, Xt+σc)

)
(25.2.58)

+ rK Et,x

(∫ σc

0

e−ruI(Xt+u ≤ c(t+u)) du

)
= Et,x

(
e−rσcG(Xt+σc)

)
+ rK Et,x

(∫ σc

0

e−ruI(Xt+u ≤ c(t+u)) du

)
= G(x) − rK Et,x

(∫ σc

0

e−ruI(Xt+u <K) du

)
+ rK Et,x

(∫ σc

0

e−ruI(Xt+u ≤ c(t+u)) du

)
= G(x)

since Xt+u < K and Xt+u ≤ c(t + u) for all 0 ≤ u < σc . This estab-
lishes (25.2.52) and thus (25.2.51) holds as well as explained above.

7◦. Consider the stopping time

τc = inf { 0 ≤ s ≤ T − t : Xt+s ≤ c(t+s) }. (25.2.59)

Note that (25.2.47) using (25.2.45) and (25.2.51) reads

e−rsV c(t+s, Xt+s) = V c(t, x) (25.2.60)

+
∫ s

0

e−ruH(t+u, Xt+u) I(Xt+u≤c(t+u)) du + M c
s

where H = Gt+LXG−rG = −rK for x ≤ c(t) and (M c
s )0≤s≤T−t is a martingale

under Pt,x . Thus Et,xM c
τc

= 0 , so that after inserting τc in place of s in (25.2.60),
it follows upon taking the Pt,x -expectation that

V c(t, x) = Et,x

(
e−rτc(K −Xt+τc)

+
)

(25.2.61)

for all (t, x) ∈ [0, T )× (0,∞) where we use that V c(t, x) = G(x) = (K −x)+ for
x ≤ c(t) or t = T . Comparing (25.2.61) with (25.2.1) we see that

V c(t, x) ≤ V (t, x) (25.2.62)

for all (t, x) ∈ [0, T )× (0,∞) .

8◦. Let us now show that c ≥ b on [0, T ] . For this, recall that by the same
arguments as for V c we also have

e−rsV (t+s, Xt+s) = V (t, x) (25.2.63)

+
∫ s

0

e−ruH(t+u, Xt+u) I(Xt+u≤b(t+u)) du + M b
s



Section 25. The American option 391

where H = Gt+LXG−rG = −rK for x ≤ b(t) and (M b
s )0≤s≤T−t is a martingale

under Pt,x . Fix (t, x) ∈ (0, T ) × (0,∞) such that x < b(t) ∧ c(t) and consider
the stopping time

σb = inf { 0 ≤ s ≤ T − t : Xt+s ≥ b(t+s) }. (25.2.64)

Inserting σb in place of s in (25.2.60) and (25.2.63) and taking the Pt,x -expec-
tation, we get

Et,x

(
e−rσbV c(t+σb, Xt+σb

)
)

= G(x) (25.2.65)

− rK Et,x

(∫ σb

0

e−ruI(Xt+u ≤ c(t+u)) du

)
,

Et,x

(
e−rσbV (t+σb, Xt+σb

)
)

= G(x) − rK Et,x

(∫ σb

0

e−ru du

)
. (25.2.66)

Hence by (25.2.62) we see that

Et,x

(∫ σb

0

e−ruI(Xt+u≤c(t+u)) du

)
≥ Et,x

(∫ σb

0

e−ru du

)
(25.2.67)

from where it follows by the continuity of c and b that c(t) ≥ b(t) for all
0 ≤ t ≤ T .

9◦. Finally, let us show that c must be equal to b . For this, assume that
there is t ∈ (0, T ) such that c(t) > b(t) , and pick x ∈ (b(t), c(t)) . Under Pt,x con-
sider the stopping time τb from (25.2.23). Inserting τb in place of s in (25.2.60)
and (25.2.63) and taking the Pt,x -expectation, we get

Et,x

(
e−rτbG(Xt+τb

)
)

= V c(t, x) (25.2.68)

− rK Et,x

(∫ τb

0

e−ruI(Xt+u≤c(t+u)) du

)
,

Et,x

(
e−rτbG(Xt+τb

)
)

= V (t, x). (25.2.69)

Hence by (25.2.62) we see that

Et,x

(∫ τb

0

e−ruI(Xt+u≤c(t+u)) du

)
≤ 0 (25.2.70)

from where it follows by the continuity of c and b that such a point x cannot
exist. Thus c must be equal to b , and the proof is complete. �

Remark 25.4. The fact that U c defined in (25.2.40) must be equal to G be-
low c when c solves (25.2.39) is truly remarkable. The proof of this fact given
above (paragraphs 2◦– 6◦ ) follows the way which led to its discovery. A shorter
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but somewhat less revealing proof can also be obtained by introducing U c as
in (25.2.40) and then verifying directly (using the Markov property only) that

e−rsU c(t+s, Xt+s) + rK

∫ s

0

e−ruI(Xt+u≤c(t+u)) du (25.2.71)

is a martingale under Pt,x for 0 ≤ s ≤ T − t . In this way it is possible to
circumvent the material from paragraphs 2◦– 4◦ and carry out the rest of the proof
starting with (25.2.56) onward. Moreover, it may be noted that the martingale
property of (25.2.71) does not require that c is increasing (but only measurable).
This shows that the claim of uniqueness in Theorem 25.3 holds in the class of
continuous (or left-continuous) functions c : [0, T ] → R such that 0 < c(t) < K
for all 0 < t < T . It also identifies some limitations of the approach based on
the local time-space formula (cf. Subsection 3.5) as initially undertaken (where c
needs to be of bounded variation).

Remark 25.5. Note that in Theorem 25.3 above we do not assume that the solution
starts (ends) at a particular point. The equation (25.2.39) is highly nonlinear and
seems to be out of the scope of any existing theory on nonlinear integral equations
(the kernel having four arguments). Similar equations arise in the first-passage
problem for Brownian motion (cf. Subsection 14.2).

Notes. According to theory of modern finance (see e.g. [197]) the arbitrage-
free price of the American put option with a strike price K coincides with
the value function V of the optimal stopping problem with the gain function
G = (K −x)+ . The optimal stopping time in this problem is the first time when
the price process (geometric Brownian motion) falls below the value of a time-
dependent boundary b . When the option’s expiration date T is finite, the math-
ematical problem of finding V and b is inherently two-dimensional and therefore
analytically more difficult (for infinite T the problem is one-dimensional and b
is constant).

The first mathematical analysis of the problem is due to McKean [133] who
considered a “discounted” American call with the gain function G = e−βt(x−K)+

and derived a free-boundary problem for V and b . He further expressed V in
terms of b so that b itself solves a countable system of nonlinear integral equations
(p. 39 in [133]). The approach of expressing V in terms of b was in line with the
ideas coming from earlier work of Kolodner [114] on free-boundary problems in
mathematical physics (such as Stefan’s ice melting problem). The existence and
uniqueness of a solution to the system for b derived by McKean was left open
in [133].

McKean’s work was taken further by van Moerbeke [215] who derived a
single nonlinear integral equation for b (pp. 145–146 in [215]). The connection
to the physical problem is obtained by introducing the auxiliary function Ṽ =
∂(V−G)/∂t so that the “smooth-fit condition” from the optimal stopping problem
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translates into the “condition of heat balance” (i.e. the law of conservation of
energy) in the physical problem. A motivation for the latter may be seen from the
fact that in the mathematical physics literature at the time it was realized that the
existence and local uniqueness of a solution to such nonlinear integral equations
can be proved by applying the contraction principle (fixed point theorem), first
for a small time interval and then extending it to any interval of time by induction
(see [137] and [70]). Applying this method, van Moerbeke has proved the existence
and local uniqueness of a solution to the integral equations of a general optimal
stopping problem (see Sections 3.1 and 3.2 in [215]) while the proof of the same
claim in the context of the discounted American call [133] is merely indicated (see
Section 4.4 in [215]). One of the technical difficulties in this context is that the
derivative b′ of the optimal boundary b is not bounded at the initial point T as
used in the general proof (cf. Sections 3.1 and 3.2 in [215]).

The fixed point method usually results in a long and technical proof with
an indecisive end where the details are often sketched or omitted. Another conse-
quence of the approach is the fact that the integral equations in [133] and [215]
involve both b and its derivative b′ , so that either the fixed point method results
in proving that b is differentiable, or this needs to be proved a priori if the existence
is claimed simply by identifying b with the boundary of the set where V = G .
The latter proof, however, appears difficult to give directly, so that if one is only
interested in the actual values of b which indicate when to stop, it seems that
the differentiability of b plays a minor role. Finally, since it is not obvious to see
(and it was never explicitly addressed) how the “condition of heat balance” relates
to the economic mechanism of “no-arbitrage” behind the American option, one is
led to the conclusion that the integral equations derived by McKean and van Mo-
erbeke, being motivated purely by the mathematical tractability arising from the
work in mathematical physics, are perhaps more complicated then needed from
the standpoint of optimal stopping.

This was to be confirmed in the beginning of the 1990’s when Kim [110], Jacka
[102] and Carr, Jarrow, Myneni [27] independently arrived at a nonlinear integral
equation for b that is closely linked to the early exercise premium representation
of V having a clear economic meaning (see Section 1 in [27] and Corollary 3.1
in [142]). In fact, the equation is obtained by inserting x = b(t) in this represen-
tation, and for this reason it is called the free-boundary equation (see (25.2.39)
above). The early exercise premium representation for V follows transparently
from the free-boundary formulation (given that the smooth-fit condition holds)
and moreover corresponds to the decomposition of the superharmonic function V
into its harmonic and its potential part (the latter being the basic principle of
optimal stopping established in the works of Snell [206] and Dynkin [52]).

The superharmonic characterization of the value function V (cf. Chapter
I) implies that e−rsV (t− s, Xt+s) is the smallest supermartingale dominating
e−rs(K −Xt+s)+ on [0, T − t] , i.e. that V (t, x) is the smallest superharmonic
function (relative to ∂/∂t + LX − rI ) dominating (K −x)+ on [0, T ]×R+ . The
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two requirements (i.e. smallest and superharmonic) manifest themselves in the
single analytic condition of smooth fit (25.2.28).

The derivation of the smooth-fit condition given in Myneni [142] upon inte-
grating the second formula on p. 15 and obtaining the third one seems to violate
the Newton–Leibniz formula unless x �→ V (t, x) is smooth at b(t) so that there is
nothing to prove. Myneni writes that this proof is essentially from McKean [133].
A closer inspection of his argument on p. 38 in [133] reveals the same difficulty.
Alternative derivations of the smooth-fit principle for Brownian motion and dif-
fusions are given in Grigelionis & Shiryaev [88] and Chernoff [30] by a Taylor
expansion of V at (t, b(t)) and in Bather [11] and van Moerbeke [215] by a
Taylor expansion of G at (t, b(t)) . The latter approach seems more satisfactory
generally since V is not known a priori. Jacka [104] (Corollary 7) develops a
different approach which he applies in [102] (Proposition 2.8) to verify (25.2.28).

It follows from the preceding that the optimal stopping boundary b satis-
fies the free-boundary equation, however, as pointed out by Myneni [142] (p. 17)
“the uniqueness and regularity of the stopping boundary from this integral equa-
tion remain open”. This attempt is in line with McKean [133] (p. 33) who wrote
that “another inviting unsolved problem is to discuss the integral equation for the
free-boundary of section 6”, concluding the paper (p. 39) with the words “even
the existence and uniqueness of solutions is still unproved”. McKean’s integral
equations [133] (p. 39) are more complicated (involving b′ as well) than the equa-
tion (25.2.37). Thus the simplification of his equations to the equations (25.2.37)
and finally the equation (25.2.39) may be viewed as a step to the solution of the
problem. Theorem 4.3 of Jacka [102] states that if c : [0, T ] → R is a “left-
continuous” solution of (25.2.37) for all x ∈ (0, c(t)] satisfying 0 < c(t) < K for
all t ∈ (0, T ) , then c is the optimal stopping boundary b . Since (25.2.37) is
a different equation for each new x ∈ (0, c(t)] , we see that this assumption in
effect corresponds to c solving a countable system of nonlinear integral equations
(obtained by letting x in (0, c(t)] run through rationals for instance). From the
standpoint of numerical calculation it is therefore of interest to reduce the number
of these equations.

The main purpose of the present section (following [164]) is to show that
the question of Myneni can be answered affirmatively and that the free-boundary
equation alone does indeed characterize the optimal stopping boundary b . The key
argument in the proof is based on the local time-space formula [163] (see Subsection
3.5). The same method of proof can be applied to more general continuous Markov
processes (diffusions) in problems of optimal stopping with finite horizon. For
example, in this way it is also possible to settle the somewhat more complicated
problem of the Russian option with finite horizon [165] (see Section 26 below).

With reference to [133] and [215] it is claimed in [142] (and used in some
other papers too) that b is C1 but we could not find a complete/transparent
proof in either of these papers (nor anywhere else). If it is known that b is C1 ,
then the proof above shows that C in (25.2.32) can be replaced by C̄ , implying
also that s �→ V (s, b(t)) is C1 at t . For both, in fact, it is sufficient to know
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that b is (locally) Lipschitz, but it seems that this fact is no easier to establish
directly, and we do not know of any transparent proof.

For more information on the American option problem we refer to the survey
paper [142], the book [197] and Sections 2.5–2.8 in the book [107] where further
references can also be found. For a numerical discussion of the free-boundary
equation and possible improvements along these lines see e.g. [93]. For asymptotics
of the optimal stopping boundary see [121], and for a proof that it is convex see
[58]. For random walks and Lévy processes see [33], [140] and [2].

26. The Russian option

26.1. Infinite horizon

1. The arbitrage-free price of the Russian option with infinite horizon (perpetual
option) is given by

V = sup
τ

E
(
e−(r+λ)τMτ

)
(26.1.1)

where the supremum is taken over all stopping times τ of the geometric Brownian
motion S = (St)t≥0 solving

dSt = rSt dt + σSt dBt (S0 = s) (26.1.2)

and M = (Mt)t≥0 is the maximum process given by

Mt =
(

max
0≤u≤t

Su

)
∨ m (26.1.3)

where m≥ s > 0 are given and fixed. We recall that B = (Bt)t≥0 is a standard
Brownian motion process started at zero, r > 0 is the interest rate, λ > 0 is the
discounting rate, and σ > 0 is the volatility coefficient.

2. The problem (26.1.1) is two-dimensional since the underlying Markov pro-
cess may be identified with (S, M) . Using the same method as in Section 13
it is possible to solve the problem (26.1.1) explicitly. Instead we will follow a
different route to the explicit solution using a change of measure (cf. Subsec-
tion 15.3) which reduces the initial two-dimensional problem to an equivalent
one-dimensional problem (cf. Subsection 6.2). This reduction becomes especially
handy in the case when the horizon in (26.1.1) is finite (cf. Subsection 26.2 below).

Recalling that the strong solution of (26.1.2) is given by (26.1.9) below and
writing Mτ in (26.1.1) as Sτ (Mτ/Sτ ) , we see by change of measure that

V = s sup
τ

Ẽ(e−λτXτ ) (26.1.4)

where we set
Xt =

Mt

St
(26.1.5)




